Mitochondrial uncoupling and lipid metabolism in adipocytes.

نویسندگان

  • J Kopecký
  • M Rossmeisl
  • P Flachs
  • K Bardová
  • P Brauner
چکیده

Metabolism of white adipose tissue is involved in the control of body fat content. In vitro experiments indicated a dependence of lipogenesis on mitochondrial ATP production, as well as a reciprocal link between hormonal effects on metabolism and energetics of adipocytes. Therefore, mitochondrial uncoupling in adipocytes that results in stimulation of energy dissipation and depression of ATP synthesis may contribute to control of lipid metabolism and adiposity. This is supported by the expression of protonophoric proteins in adipocytes, e.g. uncoupling proteins (UCPs) 2 and 5, and some anion transporters, and induction of UCP1 and UCP3 in white fat by pharmacological treatments that reduce adiposity. Negative correlation between expression of UCPs in adipocytes and accumulation of white fat was also found. Expression of UCP1 from the adipose-specific promoter in aP2-Ucp1 transgenic mice mitigated obesity induced by genetic or dietary factors. The obesity resistance, accompanied by mitochondrial uncoupling in adipocytes and increased energy expenditure, resulted from ectopic expression of UCP1 in white but not in brown fat. Probably due to depression of ATP/ADP ratio in white fat of transgenic mice, both fatty acid synthesis and lipolytic action of noradrenaline in adipocytes were relatively low. These results support the role of protonophoric proteins in adipocytes in the control of adiposity. The main function of these proteins in white fat may be modulation of lipogenesis and intracellular hormone signalling. Augmentation of energy expenditure may be of relatively small importance, in accordance with the low oxidative capacity of white adipocytes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mild mitochondrial uncoupling does not affect mitochondrial biogenesis but downregulates pyruvate carboxylase in adipocytes: role for triglyceride content reduction.

In adipocytes, mitochondrial uncoupling is known to trigger a triglyceride loss comparable with the one induced by TNFα, a proinflammatory cytokine. However, the impact of a mitochondrial uncoupling on the abundance/composition of mitochondria and its connection with triglyceride content in adipocytes is largely unknown. In this work, the effects of a mild mitochondrial uncoupling triggered by ...

متن کامل

Metabolic Flux Analysis of Mitochondrial Uncoupling in 3T3-L1 Adipocytes

BACKGROUND Increasing energy expenditure at the cellular level offers an attractive option to limit adiposity and improve whole body energy balance. In vivo and in vitro observations have correlated mitochondrial uncoupling protein-1 (UCP1) expression with reduced white adipose tissue triglyceride (TG) content. The metabolic basis for this correlation remains unclear. METHODOLOGY/PRINCIPAL FI...

متن کامل

Effects of forced uncoupling protein 1 expression in 3T3-L1 cells on mitochondrial function and lipid metabolism.

Obesity-related increase in body fat mass is a risk factor for many diseases, including type 2 diabetes. Controlling adiposity by targeted modulation of adipocyte enzymes could offer an attractive alternative to current dietary approaches. Brown adipose tissue, which is present in rodents but not in adult humans, expresses the mitochondrial uncoupling protein 1 (UCP1) that promotes cellular ene...

متن کامل

The Common and Distinct Features of Brown and Beige Adipocytes

Two types of thermogenic fat cells, brown adipocytes and beige adipocytes, play a key role in the regulation of systemic energy homeostasis in mammals. Both brown fat and beige fat possess thermogenic properties in addition to common morphological and biochemical characteristics, including multilocular lipid droplets and cristae-dense mitochondria. Recent studies also identify features that are...

متن کامل

Opa3, a novel regulator of mitochondrial function, controls thermogenesis and abdominal fat mass in a mouse model for Costeff syndrome.

The interrelationship between brown adipose tissue (BAT) and white adipose tissue (WAT) is emerging as an important factor in obesity, but the effect of impairing non-shivering thermogenesis in BAT on lipid storage in WAT remains unclear. To address this, we have characterized the metabolic phenotype of a mouse model for Costeff syndrome, in which a point mutation in the mitochondrial membrane ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemical Society transactions

دوره 29 Pt 6  شماره 

صفحات  -

تاریخ انتشار 2001